Nilai lim_(x→0)⁡ (sin ⁡7x+tan⁡ 3x-sin⁡ 5x)/(tan ⁡9x-tan⁡ 3x-sin⁡ x)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x\to 0} \ \frac{\sin 7x + \tan 3x - \sin 5x}{\tan 9x - \tan 3x - \sin x} = \cdots \)

  1. 9
  2. 7
  3. 5
  4. 3
  5. 1

Pembahasan:

\begin{aligned} \lim_{x\to 0} \ \frac{\sin 7x + \tan 3x - \sin 5x}{\tan 9x - \tan 3x - \sin x} &= \lim_{x\to 0} \ \frac{\sin 7x + \tan 3x - \sin 5x}{\tan 9x - \tan 3x - \sin x} \times \frac{\frac{1}{x}}{\frac{1}{x}} \\[8pt] &= \lim_{x\to 0} \ \frac{ \frac{\sin 7x}{x} + \frac{\tan 3x}{x} - \frac{\sin 5x}{x} }{\frac{\tan 9x}{x} - \frac{\tan 3x}{x} - \frac{\sin x}{x}} \\[8pt] &= \frac{ \displaystyle \lim_{x\to 0} \ \frac{\sin 7x}{x} + \lim_{x\to 0} \ \frac{\tan 3x}{x} - \lim_{x\to 0} \ \frac{\sin 5x}{x} }{ \displaystyle \lim_{x\to 0} \ \frac{\tan 9x}{x} - \lim_{x\to 0} \ \frac{\tan 3x}{x} - \lim_{x\to 0} \ \frac{\sin x}{x} } \\[8pt] &= \frac{7 + 3 - 5}{9 - 3 - 1} = \frac{5}{5} = 1 \end{aligned}

Jawaban E.